159 research outputs found

    Colonyzer: automated quantification of micro-organism growth characteristics on solid agar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput screens comparing growth rates of arrays of distinct micro-organism cultures on solid agar are useful, rapid methods of quantifying genetic interactions. Growth rate is an informative phenotype which can be estimated by measuring cell densities at one or more times after inoculation. Precise estimates can be made by inoculating cultures onto agar and capturing cell density frequently by plate-scanning or photography, especially throughout the exponential growth phase, and summarising growth with a simple dynamic model (e.g. the logistic growth model). In order to parametrize such a model, a robust image analysis tool capable of capturing a wide range of cell densities from plate photographs is required.</p> <p>Results</p> <p>Colonyzer is a collection of image analysis algorithms for automatic quantification of the size, granularity, colour and location of micro-organism cultures grown on solid agar. Colonyzer is uniquely sensitive to extremely low cell densities photographed after dilute liquid culture inoculation (spotting) due to image segmentation using a mixed Gaussian model for plate-wide thresholding based on pixel intensity. Colonyzer is robust to slight experimental imperfections and corrects for lighting gradients which would otherwise introduce spatial bias to cell density estimates without the need for imaging dummy plates. Colonyzer is general enough to quantify cultures growing in any rectangular array format, either growing after pinning with a dense inoculum or growing with the irregular morphology characteristic of spotted cultures. Colonyzer was developed using the open source packages: Python, RPy and the Python Imaging Library and its source code and documentation are available on SourceForge under GNU General Public License. Colonyzer is adaptable to suit specific requirements: e.g. automatic detection of cultures at irregular locations on streaked plates for robotic picking, or decreasing analysis time by disabling components such as lighting correction or colour measures.</p> <p>Conclusion</p> <p>Colonyzer can automatically quantify culture growth from large batches of captured images of microbial cultures grown during genome-wide scans over the wide range of cell densities observable after highly dilute liquid spot inoculation, as well as after more concentrated pinning inoculation. Colonyzer is open-source, allowing users to assess it, adapt it to particular research requirements and to contribute to its development.</p

    A copula model for marked point processes

    Get PDF
    The final publication (Diao, Liqun, Richard J. Cook, and Ker-Ai Lee. (2013) A copula model for marked point processes. Lifetime Data Analysis, 19(4): 463-489) is available at Springer via http://dx.doi.org/10.1007/s10985-013-9259-3Many chronic diseases feature recurring clinically important events. In addition, however, there often exists a random variable which is realized upon the occurrence of each event reflecting the severity of the event, a cost associated with it, or possibly a short term response indicating the effect of a therapeutic intervention. We describe a novel model for a marked point process which incorporates a dependence between continuous marks and the event process through the use of a copula function. The copula formulation ensures that event times can be modeled by any intensity function for point processes, and any multivariate model can be specified for the continuous marks. The relative efficiency of joint versus separate analyses of the event times and the marks is examined through simulation under random censoring. An application to data from a recent trial in transfusion medicine is given for illustration.Natural Sciences and Engineering Research Council of Canada (RGPIN 155849); Canadian Institutes for Health Research (FRN 13887); Canada Research Chair (Tier 1) – CIHR funded (950-226626

    Factors associated with crisis pregnancies in Ireland: Findings from three nationally representative sexual health surveys

    Get PDF
    Background: Findings on the demographic and sexual health characteristics associated with the experience of a crisis pregnancy is important to inform the public health policy of a country, including Ireland. Findings from other jurisdictions have suggested that certain demographic groups are at risk for unintended pregnancies and the disparity between the groups have been growing in recent years. Ireland is a country which experienced much economic and societal change in the first decade of the 21st century, changes which are likely to have affected demographic variables pertaining to sexual health. The current study had two aims: to investigate changes in the socioeconomic characteristics associated with crisis pregnancies over a seven year period [2003 to 2010], and to investigate the recent [2010] socioeconomic risk factors associated with crisis pregnancies in Ireland. Methods: The study compared the results from 18-45 year old women using data from three broadly similar nationally representative Irish sexual health surveys carried out in 2003, 2004-2006 and 2010. Chi square analysis compared of the socioeconomic characteristics across the seven year period and found that a higher proportion of women with two or more children and women for whom religion was not important reported a crisis pregnancy in 2010 compared with earlier years. A logistic regression then investigated the sexual health history and socioeconomic factors associated with the experience of a recent crisis pregnancy using the most recent 2010 data. Results: Receipt of sex education and contraception use at first sex significantly predicted the experiencing of a recent crisis pregnancy. Younger women and those with a lower level of education were more likely to report having experienced a recent crisis pregnancy. Conclusion: Similar demographic groups are at risk for experiencing a crisis pregnancy in Ireland compared with international research, yet the disparities between demographic groups who have experienced a crisis pregnancy appear to be decreasing rather than increasing over a seven year period. Recommendations are made with regard to the provision of continued sex education throughout the lifespan, particularly for those women who are at an increased risk of experiencing a crisis pregnancy

    Differential Patterns of Food Appreciation during Consumption of a Simple Food in Congenitally Anosmic Individuals: An Explorative Study

    Get PDF
    Food is evaluated for various attributes. One of the key food evaluation domains is hedonicity. As food is consumed, its hedonic valence decreases (due to prolonged sensory stimulation) and hedonic habituation results. The aim of the present study was to investigate changes in food pleasantness ratings during consumption of a simple food by individuals without olfactory experience with food as compared to normosmics. 15 congenital anosmics and 15 normosmic controls were each presented with ten 10 g banana slices. Each was visually inspected, then smelled and chewed for ten seconds and subsequently rated for hedonicity on a 21-point scale. There was a significant difference in pleasantness ratings between congenital anosmics and controls (F(1, 26) = 6.71, p = .02) with the anosmics exhibiting higher ratings than the controls, a significant main repeated-measures effect on the ratings (F(1.85, 48) = 12.15, p<.001), which showed a decreasing trend over the course of consumption, as well as a significant portion*group interaction (F(1.85, 48) = 3.54, p = .04), with the anosmic participants experiencing a less pronounced decline. The results of the present explorative study suggest that over the course of consumption of a simple food, congenitally anosmic individuals experience differential patterns of appreciation of food as compared to normosmics. In this particular case, the decrease of hedonic valence was less pronounced in congenital anosmics

    Membrane-Anchored HIV-1 N-Heptad Repeat Peptides Are Highly Potent Cell Fusion Inhibitors via an Altered Mode of Action

    Get PDF
    Peptide inhibitors derived from HIV-gp41 envelope protein play a pivotal role in deciphering the molecular mechanism of HIV-cell fusion. According to accepted models, N-heptad repeat (NHR) peptides can bind two targets in an intermediate fusion conformation, thereby inhibiting progression of the fusion process. In both cases the orientation towards the endogenous intermediate conformation should be important. To test this, we anchored NHR to the cell membrane by conjugating fatty acids with increasing lengths to the N- or C-terminus of N36, as well as to two known N36 mutants; one that cannot bind C-heptad repeat (CHR) but can bind NHR (N36 MUTe,g), and the second cannot bind to either NHR or CHR (N36 MUTa,d). Importantly, the IC50 increased up to 100-fold in a lipopeptide-dependent manner. However, no preferred directionality was observed for the wild type derived lipopeptides, suggesting a planar orientation of the peptides as well as the endogenous NHR region on the cell membrane. Furthermore, based on: (i) specialized analysis of the inhibition curves, (ii) the finding that N36 conjugates reside more on the target cells that occupy the receptors, and (iii) the finding that N36 MUTe,g acts as a monomer both in its soluble form and when anchored to the cell membrane, we suggest that anchoring N36 to the cell changes the inhibitory mode from a trimer which can target both the endogenous NHR and CHR regions, to mainly monomeric lipopetides that target primarily the internal NHR. Besides shedding light on the mode of action of HIV-cell fusion, the similarity between functional regions in the envelopes of other viruses suggests a new approach for developing potent HIV-1 inhibitors

    Tachykinins Stimulate a Subset of Mouse Taste Cells

    Get PDF
    The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods

    TGF-ß Sma/Mab Signaling Mutations Uncouple Reproductive Aging from Somatic Aging

    Get PDF
    Female reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15–20 day adulthood. All of the known mutations and treatments that extend C. elegans' reproductive period also regulate longevity, suggesting that reproductive span is normally linked to life span. C. elegans has two canonical TGF-ß signaling pathways. We recently found that the TGF-ß Dauer pathway regulates longevity through the Insulin/IGF-1 Signaling (IIS) pathway; here we show that this pathway has a moderate effect on reproductive span. By contrast, TGF-ß Sma/Mab signaling mutants exhibit a substantially extended reproductive period, more than doubling reproductive span in some cases. Sma/Mab mutations extend reproductive span disproportionately to life span and act independently of known regulators of somatic aging, such as Insulin/IGF-1 Signaling and Dietary Restriction. This is the first discovery of a pathway that regulates reproductive span independently of longevity and the first identification of the TGF-ß Sma/Mab pathway as a regulator of reproductive aging. Our results suggest that longevity and reproductive span regulation can be uncoupled, although they appear to normally be linked through regulatory pathways

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales

    Crossmodal correspondences between odors and contingent features: odors, musical notes, and geometrical shapes

    Full text link
    corecore